Zeichnen Sie das (Orts-) Diagramm und rechnen Sie mit Verschiebung

Wenn Sie die Bewegung einer Person (oder eines Objekts) aufzeichnen möchten, möchten Sie sicher sein, wo sich diese Person zu einem beliebigen Zeitpunkt befand. Es ist wichtig, den Startpunkt (oder Nullpunkt) zu bestimmen und den Abstand dieser Person zu diesem Startpunkt zu verfolgen. Sie können die Messwerte in einem sogenannten (Ort-Zeit-) Diagramm darstellen. Ein anderer Name für das (Orts-) Diagramm ist das (x, t) Diagramm. Das x steht für den Ort und das t für die Zeit. Wenn Sie manuell messen, können Sie eine altmodische Stoppuhr verwenden. Wenn Sie das nicht zur Hand haben: Stoppuhren sind heutzutage oft auf Ihrem Handy (oder mit einer App) oder auf einer Sportuhr.

Erstellen eines (Orts-) Diagramms

Wenn Sie ein (Orts-) Diagramm erstellen möchten, können Sie wie folgt vorgehen. Angenommen, Sie möchten von einem Wanderer wissen, wo es zu welcher Zeit war. Dann können Sie mit ein paar Freunden folgende Messung durchführen:
Abbildung 1: (Orts-) Diagramm des Wanderers.
  • Messpunkt 1: Sie messen den Abstand zum Startpunkt des ersten Messpunkts. Angenommen, dieser Messpunkt liegt 750,0 Meter (m) vom Startpunkt entfernt. Zwischen dem Startsignal und der Ankunft des Fußgängers liegen 20,6 Minuten. Dies ist 1236 Sekunden.
  • Messpunkt 2: Der nächste Messpunkt liegt 1500,0 Meter vom Startpunkt entfernt. Der Wanderer kommt dort nach 30,6 Minuten nach dem Startsignal an. Das sind 1836 Sekunden.
  • Messpunkt 3: Die dritte Messung erfolgt bei 2250,0 Metern. Dies ist nach 41,5 Minuten nach dem Startsignal. Das sind 2490 Sekunden.

Unterschreiben jetzt das (ort-zeit) diagramm. Siehe Abbildung 1: (Orts-) Diagramm des Gehers.

Formel für den Umzug

Die Verschiebung ist auch mit Δx angegeben. Das Δ-Symbol heißt Delta. Es zeigt den Unterschied an. Die Formel für den Umzug lautet:
X = xende - xstarten
Wo:
  • Δx = Verschiebung in Metern (m)
  • xende = Ort am Ende des Zeitraums in Metern (m)
  • xstarten = Ort zu Beginn des Zeitraums in Metern (m)

Umzugsberechnung

  • Nach t = 1236 Sekunden (20,6 Minuten) legte der Läufer 750,0 Meter (m) zurück.
  • Nach t = 1836 Sekunden (war 30,6 Minuten) hat der Wanderer 1500,0 Meter (m) zurückgelegt.
  • Die Verschiebung zwischen t = 1236 und t = 1836 beträgt: 1500,0 m - 750,0 m = 750,0 m.

Hinweis: Eine Verschiebung kann auch negativ sein. Dies hängt einfach mit den Vereinbarungen zusammen, die Sie treffen. Wenn Sie einen Zug nach rechts positiv und einen Zug nach links negativ nennen, können Sie einen negativen Zug haben. Außerdem ist die Verschiebung manchmal mit s angegeben. Das s steht für das lateinische Wort Spatium das heißt zurückgelegte Strecke.
Auf t = 0 setzen Sie stehen am Punkt s = 0. Sie bewegen sich nach links. Nach 5 Sekunden sind Sie 7 Meter links von Ihrem Startpunkt. Dann beträgt die Verschiebung s = -7 Meter.

Berechnen Sie die Entfernung mit dem Echo

Abbildung 2: Entfernung mit dem Echo berechnen
Jan möchte wissen, wie weit ein Berg entfernt ist. Aus dem Physikunterricht weiß er noch, dass die Schallgeschwindigkeit etwa 330 Meter pro Sekunde beträgt. Er ruft "Echo". Mit der Stoppuhr seines Smartphones misst er, dass er nach 8 Sekunden die Reflexion des Geräusches hört. Wie weit ist es von Jan bis zum Berg?
  1. Die Schallgeschwindigkeit beträgt 330 Meter pro Sekunde
  2. Die abgelaufene Zeit beträgt 8 Sekunden. Dies ist für "Zurück" und "Zurück" des Sounds.
  3. Die Gesamtentfernung "zurück" und "zurück" beträgt: 8 Sekunden mal 330 Meter pro Sekunde: 2640 Meter.
  4. Die Entfernung von Jan zum Berg beträgt 2640 Meter / 2 = 1340 Meter.

Video: Graphen von Wurzelfunktionen (April 2020).

Lassen Sie Ihren Kommentar